FORCING POSITIVE PARTITION RELATIONS

BY

STEVO TODORČEVIĆ

ABSTRACT. We show how to force two strong positive partition relations on ω_1 and use them in considering several well-known open problems.

In [32] Sierpiński proved that the well-known Ramsey Theorem [27] does not generalize to the first uncountable cardinal by constructing a partition $[\omega_1]^2 = K_0 \cup K_1$ with no uncountable homogeneous sets. Sierpiński's partition has been analyzed in several directions. One direction was to improve this relation so as to get much stronger negative partition relations on ω_1 . The direction taken in this paper is to prove stronger and stronger positive relations on ω_1 which do not appear to be refutable by Sierpiński's partition. The first result of this kind is due to Dushnik and Miller [9] who proved

$$\omega_1 \to (\omega_1, \omega)^2$$
.

This was later improved by Erdös and Rado [11] to

$$\omega_1 \rightarrow (\omega_1, \omega + 1)^2$$
.

In [17] Hajnal proved the following result which shows that the Erdös-Rado theorem is, in a sense, a best possible result of this sort in ZFC:

CH implies
$$\omega_1 \nrightarrow (\omega_1, \omega + 2)^2$$
.

Problem 8 of Erdös and Hajnal [12, 13] asks whether $\omega_1 \nrightarrow (\omega_1, \omega + 2)^2$ can be proved without the continuum hypothesis, i.e., whether $\omega_1 \rightarrow (\omega_1, \omega + 2)^2$ is consistent with ZFC. The first result on this problem is due to Laver [24] who proved that

$$MA_{\aleph_1}$$
 implies $\omega_1 \to \left(\omega_1, \left(\frac{\omega_1}{\omega}\right)\right)^2$.

This result was improved by Hajnal (see [24]) to

$$MA_{\aleph_1}$$
 implies $\omega_1 \to \left(\omega_1, \left(\frac{\omega_1}{\alpha}\right)\right)^2$ for all $\alpha < \omega_1$.

Clearly these results leave open the problem whether $\omega_1 \to (\omega_1, \omega + 2)^2$ is consistent. In this paper we shall prove the consistency of

$$\omega_1 \to (\omega_1, \alpha)^2$$
 for all $\alpha < \omega_1$.

Received by the editors November 19, 1982. 1980 Mathematics Subject Classification. Primary 03E05, 03E35. Let us now consider the following relation introduced by Fred Galvin (it can be considered as a dual of the usual \rightarrow relation). Let ϕ and ψ be order types and let r and κ be cardinals. Then the symbol

$$\phi \stackrel{*}{\rightarrow} (\psi)'_{\leq \kappa}$$

means: If $\phi = \operatorname{tp} A$, and if $[A]^r = \bigcup_{i \in I} K_i$ is a disjoint partition such that $|K_i| < \kappa$ for all $i \in I$, then there is a $B \subseteq A$ such that $\operatorname{tp} B = \psi$ and $|[B]^r \cap K_i| \le 1$ for all $i \in I$. Let $\phi \overset{*}{\to} (\psi)_{\kappa}^r$ iff $\phi \overset{*}{\to} (\psi)_{\kappa+1}^r$.

It is easily seen that

$$\phi \rightarrow (\psi)_{\kappa}^{r}$$
 implies $\phi \stackrel{*}{\rightarrow} (\psi)_{\kappa}^{r}$.

Hence, $\omega_1 \stackrel{\star}{\to} (\omega_1)_2^2$ is a weakening of $\omega_1 \to (\omega_1)_2^2$, and it is not "obviously" refuted by Sierpiński's partition. However, Galvin (unpublished) proved that

CH implies
$$\omega_1 \stackrel{*}{\nrightarrow} (\omega_1)_2^2$$
.

He asked whether $\omega_1 \stackrel{\star}{\nrightarrow} (\omega_1)_2^2$ is a theorem of ZFC or not. We answer this question by proving the consistency of

$$\omega_1 \stackrel{*}{\rightarrow} (\omega_1)_{\leq \aleph_0}^2$$

which is, in a sense, best possible since $\omega_1 \stackrel{\star}{\leftrightarrow} (3)_{\aleph_0}^2$.

The next problem we consider is the well-known S-space problem from general topology [22, 28, 30]. It essentially asks for a strong partition property of ω_1 . To state this problem we need some definitions. A topological space X is hereditarily separable iff every subspace of X has a countable dense subset. X is called hereditarily Lindelöf iff for every family $\mathfrak A$ of open subsets of X, there is a countable $\mathfrak A_0 \subseteq \mathfrak A$ such that $U \mathfrak A_0 = U \mathfrak A$. The S-space problem asks whether every regular hereditarily separable topological space is hereditarily Lindelöf. A counterexample to this problem is called an S-space. The problem has been intensively studied since the late 1960's, and its present formulation is due to several mathematicians [22, 28, 30]. The first example of an S-space was constructed by M. E. Rudin [29] using a Suslin tree. Since then a number of constructions have appeared using various assumptions such as \diamondsuit , CH,.... Also a number of partial nonexistence results have appeared using mainly MA + \neg CH (see [22, 28, 30]). In this paper we shall prove the consistency of:

Every regular hereditarily separable topological space is hereditarily Lindelöf.

Hence the S-space problem is undecidable on the basis of the usual axioms of set theory. Working independently and somewhat later, J. Baumgartner proved the consistency of ZFC + "there are no weak-HFD's". (HFD's form an important class of subspaces of $\{0,1\}^{\aleph_1}$ used by Hajnal and Juhász and others in constructing various sorts of S-spaces [22, 28].)

Next we are going to consider the problem of bounds on the cardinalities of Hausdorff spaces with no uncountable discrete subspaces. (A set $D \subseteq X$ is a discrete subspace of X if for every $d \in D$ there exists an open subset U_d of X such that $D \cap U_d = \{d\}$.) That the cardinality of such a space has a bound was first independently noticed by Isbell [20] (for completely regular spaces), Efimov [10] and de Groot [16]. The bound they found was $2^{2^{2^{N_0}}}$. This bound was improved to $2^{2^{N_0}}$ first by de Groot [16] for the class of all regular spaces, and then by Hajnal and Juhász [18] for the class of all Hausdorff spaces. The natural question which remained unanswered is due to de Groot, Efimov and Isbell [12, Problem 77] and asks whether there exists a Hausdorff space of cardinality $(2^{N_0})^+$ with no uncountable discrete subspaces. The first result on this problem is due to Hajnal and Juhász [19] who constructed such a space using a forcing argument. A compact example has since been constructed by Fedorčuk [14] using \diamondsuit . In this note we shall prove the consistency of:

Every Hausdorff space with no uncountable discrete subspaces has cardinality $\leq 2^{\aleph_0}$.

We shall deduce this result from the consistency of the following statement, which is of independent interest:

If X is a Hausdorff space with no uncountable discrete subspace, then every point of X is the intersection of countably many open subsets of X.

The results of this paper were proved while I was visiting the Department of Mathematics at Dartmouth College during the academic year 1980-81. I would like to express my gratitude to Professor James Baumgartner for making this visit possible. I would also like to thank Professor Fred Galvin for a very stimulating correspondence concerning a class of problems about strong partition relations on ω_1 , a small part of which is considered in this paper. The results of this paper were announced in [34, 35, and 36].

1. In this section we construct a model of ZFC + MA_{\aleph_1} in which ω_1 satisfies two strong partition relations which will be used in the rest of the paper. Our forcing terminology is standard (see [5, 21, 23]). All undefined terms concerning the partition calculus can be found in [37]. If $A, B \subseteq \omega_1$, then by $A \otimes B$ we denote $\{\{\alpha, \beta\}: \alpha \in A, \beta \in B, \alpha \neq \beta\}$. If $K \subseteq [\omega_1]^2$ and $\alpha \in \omega_1$, then $K(\alpha)$ denotes the set $\{\beta < \omega_1: \{\alpha, \beta\} \in K\}$. The symbol

$$\omega_1 \rightarrow (\omega_1, (\omega_1; \sin \omega_1))^2$$

means: For any partition $[\omega_1]^2 = K_0 \cup K_1$ either

- (1) there is an $A \in [\omega_1]^{\aleph_1}$ such that $[A]^2 \subseteq K_0$, or else
- (2) there is an $A \in [\omega_1]^{\aleph_1}$ and a family \mathfrak{B} of \aleph_1 disjoint finite subsets of ω_1 such that $(\{\alpha\} \otimes F) \cap K_1 \neq \emptyset$ for all $\alpha \in A$ and $F \in \mathfrak{B}$ with $\alpha < \min F$.

The set A which satisfies condition (2) is called a bad set. The purpose of this section is to prove the following theorem.

THEOREM 1. If ZF is consistent, then so is ZFC plus the following statements simultaneously:

- (i) $MA + 2^{\aleph_0} = \aleph_2$,
- (ii) $\omega_1 \rightarrow (\omega_1, (\omega_1; \operatorname{fin} \omega_1))^2$,
- (iii) $\omega_1 \stackrel{*}{\rightarrow} (\omega_1)_{<\aleph_0}^2$

If A is a set, then \mathcal{C}_{A} denotes the set of all finite partial functions from A into 2 ordered by \supseteq . Thus $\mathcal{C}_{\omega_{1}}$ is the standard poset for adding \aleph_{1} Cohen reals. If $\alpha < \beta \leq \omega_{1}$, then we let

$$\mathcal{C}_{\alpha,\beta} = \{ p \in \mathcal{C}_{\omega_1} : p \subseteq [\alpha,\beta) \}.$$

Let $\mathcal{C}_{\beta} = \mathcal{C}_{0,\beta}$.

Let \mathcal{E} denote the set of all pairs $\langle a, A \rangle$ where a is a countable closed subset of ω_1 and A is a closed and unbounded subset of ω_1 . We order \mathcal{E} by

$$\langle a, A \rangle \leq \langle b, B \rangle$$
 iff $b = a \cap (\max(b) + 1) \& A \subseteq B \& a \setminus b \subseteq B$.

Then & is the Jensen closed unbounded set poset [8]. It is clear that & is a σ -closed poset. Moreover, every countable set &0 \subseteq &0 of pairwise compatible elements has a greatest lower bound $\langle a, A \rangle \in \&$ 0 defined by

$$a = \overline{\bigcup \{b : \exists B(\langle b, B \rangle \in \mathcal{E}_0)\}} \quad \text{and} \quad A = \bigcap \{B : \exists b(\langle b, B \rangle \in \mathcal{E}_0)\}.$$

Let G_{ε} be a generic subset of ε . Then

$$C_{\varepsilon} = \bigcup \{a: \exists A(\langle a, A \rangle \in G_{\varepsilon})\}$$

is a closed unbounded subset of ω_1 which is almost included in every club subset of ω_1 from the ground model [8].

LEMMA 1. Let $\mathcal{C} = \mathcal{C}_{\omega_1}$ be the standard poset for adding \aleph_1 Cohen reals. Let $G_{\mathcal{C}}$ be a V-generic subset of \mathcal{C} . Let \mathcal{C} be the Jensen club set poset in $V[G_{\mathcal{C}}]$. Let (in V) \mathcal{D} be a \mathcal{C} c.c.c. poset and let $G_{\mathcal{D}}$ be a $V[G_{\mathcal{C}}]$ -generic subset of \mathcal{D} . Let, in $V[G_{\mathcal{D}}]$, $[\omega_1]^2 = K_0 \cup K_1$ and $[\omega_1]^2 = \bigcup_{\zeta < \omega_1} J_{\zeta}$ be two disjoint partitions such that the first partition has no bad sets, while each color of the second partition is finite. Let $G_{\mathcal{C}}$ be a $V[G_{\mathcal{C}}][G_{\mathcal{D}}]$ -generic subset of \mathcal{C} . In $V[G_{\mathcal{C}}][G_{\mathcal{C}}][G_{\mathcal{C}}]$, we define

$$S_0 = \left\{ s \in [\omega_1]^{<\aleph_0} : s \text{ is separated by } C_{\mathbb{S}} \& [s]^2 \subseteq K_0 \right\},$$

$$S_1 = \left\{ s \in [\omega_1]^{<\aleph_0} : s \text{ is separated by } C_{\mathbb{S}} \& \forall \zeta < \omega_1 | [s]^2 \cap J_{\zeta} | \leq 1 \right\}.$$

Let S_0 and S_1 be partially ordered by \supseteq . Then both S_0 and S_1 are c.c.c. posets in $V[G_C][G_2][G_S]$.

PROOF. We first prove the lemma for the poset S_0 . So let, in $V[G_{\mathcal{C}}][G_{\mathcal{D}}][G_{\mathcal{C}}]$, $\langle s_{\xi}: \xi < \omega_1 \rangle$ be an ω_1 -sequence of elements of S_0 . By the standard Δ -system argument we may assume that s_{ξ} 's are disjoint, increasing and of the same cardinality n, where $1 \le n < \omega$.

From now on we work in $V[G_{\mathcal{C}}][G_{\mathcal{D}}]$ and fix an \mathcal{E} -name $\langle \dot{s}_{\xi} : \xi < \omega_{1} \rangle$ for the sequence $\langle s_{\xi} : \xi < \omega_{1} \rangle$ and a condition $\langle a_{0}, A_{0} \rangle \in \mathcal{E}$ which forces that n and $\langle \dot{s}_{\xi} : \xi < \omega_{1} \rangle$ have the above properties. We shall find $\langle b, B \rangle \leq \langle a_{0}, A_{0} \rangle$ such that

$$\langle b, B \rangle \Vdash_{\varepsilon} \exists \xi < \eta < \omega_1 (\dot{s}_{\xi} \otimes \dot{s}_{\eta} \subseteq K_0).$$

This will finish the proof of Lemma 1 for the poset S_0 .

Note that \mathscr{E} is defined in $V[G_{\mathscr{C}}]$, hence it is not necessarily σ -closed in $V[G_{\mathscr{C}}][G_{\mathscr{D}}]$. Instead of \mathscr{E} we shall work with the set of all $\langle a, A \rangle \in \mathscr{E}$ such that $A \in V$. The restriction causes no loss of generality since this set is dense in \mathscr{E} . By an abuse of notation we denote it also by \mathscr{E} .

Let θ be a big enough regular cardinal, and let N_0 be a countable elementary submodel of H_{θ} such that $N_0 \cap V[G_{\mathcal{C}}] \in V[G_{\mathcal{C}}]$, and such that \mathcal{E} , $\langle a_0, A_0 \rangle$, $\langle \dot{s}_{\xi} : \xi < \omega_1 \rangle$, K_0 , $K_1 \in N_0$. Since $V[G_{\mathcal{C}}][G_2]$ is a c.c.c. extension of $V[G_{\mathcal{C}}]$, such a submodel exists. Let $\delta_0 = N_0 \cap \omega_1$, and let $F \subseteq \omega_1 \setminus \delta_0$ be a fixed set of size n. Let

$$\mathfrak{V}_{F} = \left\{ \left\langle a, A \right\rangle \in \mathfrak{S} \cap N_{0} \colon \left(\left\langle a, A \right\rangle \bot \left\langle a_{0}, A_{0} \right\rangle \right) \lor \\ \left(\left\langle a, A \right\rangle \leqslant \left\langle a_{0}, A_{0} \right\rangle \& \exists s \subseteq \delta_{0} \exists \xi < \delta_{0} \left(s \otimes F \subseteq K_{0} \& \left\langle a, A \right\rangle \Vdash_{\mathfrak{S}} \dot{s}_{\xi} = s \right) \right) \right\}.$$

CLAIM 1. \mathfrak{A}_{F} is a dense open subset of $\mathcal{E} \cap N_{0}$.

PROOF. Let $\langle b, B \rangle \leq \langle a_0, A_0 \rangle$ be a given element of $\mathcal{E} \cap N_0$. By induction on $0 \leq i \leq n$, for each strictly increasing sequence $\langle x_1, \dots, x_{n-i} \rangle$ of ordinals $< \omega_1$, we define the statements $\Phi_{n-i}(x_1, \dots, x_{n-i})$ as follows:

$$\Phi_{n}(x_{1},...,x_{n}) \quad \text{iff } \exists \xi < \omega_{1} \exists \langle a, A \rangle \leq \langle b, A \rangle (\langle a, A \rangle \Vdash_{\mathcal{E}} \dot{s}_{\xi} = \{x_{1},...,x_{n}\});$$

$$\Phi_{n-i}(x_{1},...,x_{n-i}) \quad \text{iff } |\{y < \omega_{1} : \Phi_{n-i+1}(x_{1},...,x_{n-i},y)\}| = \aleph_{1} \quad \text{for } 0 < i \leq n.$$

We shall prove that Φ_0 holds.

Starting from N_0 we build a strictly increasing, continuous sequence $\langle N_\alpha : \alpha < \omega_1 \rangle$ of countable elementary submodels of H_θ . Let $\delta_\alpha = N_\alpha \cap \omega_1$ for $\alpha < \omega_1$, and let $D = \{\delta_\alpha : \alpha < \omega_1\}$. Then D is a closed unbounded subset of ω_1 . Since $\mathcal{C} \times \mathcal{Q}$ is a c.c.c. poset, we can find $\langle a', A' \rangle \leq \langle b, B \rangle$ and $\gamma < \omega_1$ such that $A' \setminus \gamma \subseteq D$. Choose $\langle a, A \rangle \leq \langle a', A' \rangle$, $\xi < \omega_1$, and $\{z_1, \ldots, z_n\} \subseteq \omega_1 \setminus \gamma$ such that

$$\langle a, A \rangle \Vdash_{\varepsilon} \dot{s}_{\varepsilon} = \{z_1, \dots, z_n\}.$$

This shows that $\Phi_n(z_1,\ldots,z_n)$ holds. By induction on i we shall now show that $\Phi_{n-i}(z_1,\ldots,z_{n-i})$ holds for all $0 \le i < n$. Note that $\{z_1,\ldots,z_n\}$ is separated by D, so we can find $\alpha_1 < \cdots < \alpha_n < \omega_1$ such that $\delta_{\alpha_i} \le z_i < \delta_{\alpha_i+1}$ for all $i=1,\ldots,n$. So let us assume that $\Phi_{n-i+1}(z_1,\ldots,z_{n-i+1})$ holds for some 0 < i < n. Let

$$Z_{n-i+1} = \{z < \omega_1 : \Phi_{n-i+1}(z_1, \dots, z_{n-i}, z)\}.$$

Then $z_{n-i+1} \in Z_{n-i+1}$ by the assumption. Note that the parameters in the definition of Z_{n-i+1} are all members of $N_{\alpha_{n-i+1}}$, which implies $Z_{n-i+1} \in N_{\alpha_{n-i+1}}$. Hence we must have $N_{\alpha_{n-i+1}} \models Z_{n-i+1}$ is uncountable. Hence Z_{n-i+1} is really uncountable. This shows that $\Phi_{n-i}(z_1, \ldots, z_{n-i})$ holds and finishes the induction step.

Thus, in particular, $\Phi_1(z_1)$ holds, and by repeating the above argument we conclude that $\{z < \omega_1 : \Phi_1(z)\}$ is uncountable. Hence Φ_0 holds.

We have already noted that the parameters of each statement Φ_i $(0 \le i \le n)$ are members of N_0 . Hence, if we let $Y_1 = \{y < \omega_1 : \Phi_1(y)\}$ then $Y_1 \in N_0$, and by the fact that Φ_0 holds, Y_1 is uncountable. We claim that, for some $y \in Y_1 \cap \delta_0$, $\{y\} \otimes F \subseteq K_0$. Otherwise the following holds:

$$N_0 \models \forall \delta < \omega_1 \exists F_\delta \in [\omega_1 \setminus \delta]^n \forall y \in Y_1 \cap \delta((\{y\} \otimes F_\delta) \cap K_1 \neq \emptyset).$$

Since $N_0 < H_\theta$, this sentence also holds in H_θ . However, this easily gives a bad set with respect to $[\omega_1]^2 = K_0 \cup K_1$, contradicting the assumption that $V[G_{\mathcal{C}}][G_{\mathcal{D}}]$ is a property K extension of $V[G_{\mathcal{D}}]$ which contains no bad sets. So pick $y_1 \in Y_1 \cap \delta_0$ such that $\{y_1\} \otimes F \subseteq K_0$. Let $Y_2 = \{y < \omega_1 \colon \Phi_2(y_1, y)\}$. Then by the assumption that $\Phi_1(y_1)$ holds, Y_2 is uncountable. Clearly $Y_2 \in N_0$. By repeating the above argument, we can find a $y_2 \in Y_2 \cap \delta_0$ such that $\{y_2\} \otimes F \subseteq K_0$. Proceeding in this way we construct $y_1 < y_2 < \cdots < y_n$ such that

$$\{y_1,\ldots,y_n\}\otimes F\subseteq K_0$$
, and $\Phi_n(y_1,\ldots,y_n)$ holds.

Hence $N_0 \models \Phi(y_1, ..., y_n)$. This means that we can find $\xi < \delta_0$ and $\langle a, A \rangle \leq \langle b, B \rangle$ such that $\langle a, A \rangle \in \mathcal{E} \cap N_0$ and

$$\langle a, A \rangle \Vdash_{\varepsilon} \dot{s}_{\xi} = \{y_1, \dots, y_n\}.$$

This shows that $\langle a, A \rangle \in \mathcal{U}_F$ and completes the proof of Claim 1.

Define $R \subseteq (\mathcal{E} \cap N_0) \times \delta_0 \times [\delta_0]^n$ by

$$R(\langle a, A \rangle, \xi, s)$$
 iff $\langle a, A \rangle \Vdash_{\varepsilon} \dot{s}_{\xi} = s$.

Since $\delta \cap N_0$ and R can be coded using only a countable amount of information, we can find some $\alpha < \omega_1$ such that

$$\mathcal{E} \cap N_0 \in V[G_{\mathcal{C}_a}]$$
 and $R \in V[G_{\mathcal{C}_a}][G_{\mathcal{Q}}]$.

In $V[G_{\mathcal{C}_a}]$ we choose a mapping π which maps $\mathcal{C}_{\alpha,\alpha+\omega}$ isomorphically into a dense subset of $\{\langle a, A \rangle \in \mathcal{E} \cap N_0: \langle a, A \rangle \leq \langle a_0, A_0 \rangle \}$. Let

$$G = G_{\mathcal{C}_{\alpha,\alpha+\omega}} = G_{\mathcal{C}} \cap \mathcal{C}_{\alpha,\alpha+\omega}.$$

Then G is a $V[G_{\mathcal{C}_a}]$ -generic subset of $\mathcal{C}_{\alpha,\alpha+\omega}$. So $\pi''G$ is a countable pairwise compatible subset of \mathcal{E} . Hence $\pi''G$ has a lower bound $\langle \overline{a}, \overline{A} \rangle$ in \mathcal{E} .

Note that, for each $F \in [\omega_1 \setminus \delta_0]^n$, \mathfrak{V}_F is definable from F, K_0 , K_1 , $\mathfrak{E} \cap N_0$, $\langle a_0, A_0 \rangle$, δ_0 , and R. Hence, for each $F \in [\omega_1 \setminus \delta]^n$, $\mathfrak{V}_F \in V[G_{\mathcal{C}_a}][G_2]$. Since G is also a $V[G_{\mathcal{C}_a}][G_2]$ -generic subset of $\mathcal{C}_{\alpha,\alpha+\omega}$, it follows that $\pi''G$ intersects each \mathfrak{V}_F for $F \in [\omega_1 \setminus \delta_0]^n$. Hence, for each $F \in [\omega_1 \setminus \delta_0]^n$, there is an $\langle a, A \rangle \in \mathfrak{V}_F$ such that $\langle \bar{a}, \bar{A} \rangle \leq \langle a, A \rangle$.

Pick $\langle b, B \rangle \leq \langle \overline{a}, \overline{A} \rangle$, $\eta < \omega_1$, and $F \in [\omega_1 \backslash \delta_0]^n$ such that $\langle b, B \rangle \Vdash_{\varepsilon} \dot{s}_{\eta} = F$. Let $\langle a, A \rangle \in \mathfrak{A}_F$ be such that $\langle b, B \rangle \leq \langle a, A \rangle$. Thus, for some $s \in [\delta_0]^n$ and $\xi < \delta_0$, we have

$$s \otimes F \subseteq K_0$$
 and $\langle a, A \rangle \Vdash_{\varepsilon} \dot{s}_{\xi} = s$.

Hence

$$\langle b, B \rangle \Vdash_{\mathcal{E}} \dot{s}_{\xi} \otimes \dot{s}_{\eta} \subseteq K_{0}.$$

This completes the proof of Lemma 1 for the case of poset S_0 .

The proof that S_1 is a c.c.c. poset in $V[G_{\mathcal{C}}][G_{\mathcal{C}}][G_{\mathcal{C}}]$ is similar, so we mention only the main differences. Again we start with a given sequence $\langle s_{\xi} : \xi < \omega_1 \rangle$ of elements of S_1 . We may assume the s_{ξ} 's form a Δ -system with root s, and if we let $t_{\xi} = s_{\xi} \setminus s$ for $\xi < \omega_1$, then the t_{ξ} 's are strictly increasing and of the same cardinality n, where $1 \le n < \omega$.

Working in $V[G_{\mathcal{Q}}][G_{\mathcal{Q}}]$, we fix \mathcal{E} -names $\langle \dot{s}_{\xi} : \xi < \omega_{1} \rangle$ and $\langle \dot{t}_{\xi} : \xi < \omega_{1} \rangle$ for the sequences $\langle s_{\xi} : \xi < \omega_{1} \rangle$ and $\langle t_{\xi} : \xi < \omega_{1} \rangle$, and a condition $\langle a_{0}, A_{0} \rangle \in \mathcal{E}$ which forces that $n, s, \langle \dot{s}_{\xi} : \xi < \omega_{1} \rangle$ and $\langle \dot{t}_{\xi} : \xi < \omega_{1} \rangle$ have the above properties. We need to find $\langle b, B \rangle \leq \langle a_{0}, A_{0} \rangle$ such that

$$\langle b, B \rangle \Vdash_{\varepsilon} \exists \xi < \eta < \omega_1 \ \forall \zeta < \omega_1 \ \Big| \Big[\dot{s}_{\xi} \cup \dot{s}_{\eta} \Big]^2 \cap J_{\zeta} \Big| \leqslant 1.$$

We fix a cardinal θ and a countable elementary symbol N_0 of H_{θ} as before. Let

$$D = \left\{ \delta < \omega_1 \colon \lim(\delta) \& \forall \alpha < \delta \ \forall \zeta < \omega_1 \left(J_{\zeta} \cap [\delta]^2 \neq \varnothing \Rightarrow J_{\zeta}(\alpha) \subseteq \delta \right) \right\}.$$

Then D is a closed unbounded subset of ω_1 such that $D \in N_0$. Now we fix an $F \in [\omega_1 \setminus \delta_0]^n$ which is separated by D such that

$$\forall \zeta < \omega_1 \left| [s \cup F]^2 \cap J_{\zeta} \right| \leq 1,$$

and define

$$\mathfrak{V}_{F} = \left\{ \left\langle a, A \right\rangle \in \mathcal{E} \cap N \colon \left(\left\langle a, A \right\rangle \bot \left\langle a_{0}, A_{0} \right\rangle \right) \right.$$

$$\left. \left\langle \left\langle a, A \right\rangle \leqslant \left\langle a_{0}, A_{0} \right\rangle \& \, \exists t \subseteq \delta_{0} \, \exists \xi < \delta_{0} \right.$$

$$\left. \left(\forall \zeta < \omega_{1} \middle| \left[s \cup t \cup F \right]^{2} \cap J_{\zeta} \middle| \leqslant 1 \, \& \, \left\langle a, A \right\rangle \Vdash_{\mathcal{E}} \dot{t_{\xi}} = t \right) \right) \right\}.$$

As before we claim that \mathfrak{A}_F is a dense open subset of $\mathfrak{S} \cap N_0$. So let $\langle b, B \rangle \leq \langle a_0, A_0 \rangle$ be a given element of $\mathfrak{S} \cap N_0$. The statements $\Phi_{n-i}(x_1, \ldots, x_{n-i})$ $(0 \leq i \leq n)$ are defined as before. The proof that Φ_0 holds is also the same.

Let $Y_1 = \{y < \omega_1 : \Phi_1(y)\}$. Then Y_1 is uncountable and $Y_1 \in N_0$. Let $\{\zeta_1, \ldots, \zeta_{k_1}\}$ be a list of all $\zeta < \omega_1$ such that $[s \cup F]^2 \cap J_{\zeta} \neq \emptyset$. Since each J_{ζ} is finite, and since $Y_1 \cap \delta_0$ is infinite, we can find $Y_1 \in Y_1 \cap \delta_0$ such that

$$(\{y_1\} \otimes (s \cup F)) \cap J_{\zeta} = \emptyset$$
 for all $\zeta \in \{\zeta_1, \dots, \zeta_{k_1}\}$.

We claim that

$$|[s \cup \{y_1\} \cup F]^2 \cap J_{\zeta}| \le 1$$
 for all $\zeta < \omega_1$.

Otherwise, let $\zeta < \omega_1$ be such that $[s \cup \{y_1\} \cup F]^2 \cap J_{\zeta}$ contains two different edges l_0 and l_1 . It is clear that l_0 and l_1 cannot both be subsets of $s \cup \{y_1\}$ since some condition from \mathcal{E} forces this set to be a subset of a member of S_1 . From the definition of D it easily follows that $\max l_0 = \max l_1$. Hence, $\max l_0 = \max l_1 \in F$. Hence, for some i < 2, $l_i \in s \otimes F$, which means that $\zeta \in \{\zeta_1, \ldots, \zeta_{k_1}\}$. It follows that

$$(\{y_1\} \otimes (s \cup F)) \cap J_{\zeta} = \emptyset.$$

Consequently, min $l_0 \neq y_1$ and min $l_1 \neq y_1$, which yields the contradiction $l_1, l_2 \in [s \cup F]^2$.

Now let $Y_2 = \{y < \omega_1 : \Phi_2(y_1, y)\}$. Then Y_2 is uncountable and $Y_2 \in N_0$. Working as above, we can find $y_2 \in Y_2 \cap \delta$ such that

$$\left|\left[s \cup \{y_1, y_2\} \cup F\right]^2 \cap J_{\zeta}\right| \le 1 \quad \text{for all } \zeta < \omega_1.$$

Proceeding in this way we construct $y_1 < y_2 < \cdots < y_n < \delta_0$ such that

$$\forall \zeta < \omega_1 \left| \left[s \cup \left\{ y_1, \dots, y_n \right\} \cup F \right]^2 \cap J_{\zeta} \right| \leq 1,$$

and

$$\Phi_n(y_1,\ldots,y_n)$$
 holds.

Hence $N_0 \models \Phi_n(y_1, \ldots, y_n)$. So we can find $\xi < \delta_0$ and $\langle a, A \rangle \leq \langle a_0, A_0 \rangle$ such that $\langle a, A \rangle \in \mathcal{E} \cap N_0$ and

$$\langle a, A \rangle \Vdash_{\mathcal{E}} \dot{t}_{\xi} = \{y_1, \dots, y_n\}$$

This shows that $\langle a, A \rangle \in \mathcal{U}_F$. Hence, \mathcal{U}_F is a dense open subset of $\mathcal{E} \cap N_0$.

We leave the remainder of the proof of Lemma 1 to the reader since the rest of the proof for S_1 is like the proof for S_0 .

Now we are going to describe a mixed iteration $\langle \mathfrak{P}_{\alpha} : \alpha \leq \omega_2 \rangle$ of Cohen and Jensen partially ordered sets. This will be done by induction on α , and for this purpose let E and O denote the sets of all even and odd ordinals $< \omega_2$, respectively.

If $\alpha = 0$, then $\mathcal{P}_{\alpha} = \emptyset$.

If $\alpha \in E$, then $\widehat{\mathcal{P}}_{\alpha+1}$ is the set of all functions p with domain $\alpha+1$ such that $p \upharpoonright \alpha \in \mathcal{P}_{\alpha}$ and

$$\Vdash_{\mathscr{D}_{\alpha}} p(\alpha)$$
 is a member of $\dot{\mathcal{C}}_{\{\alpha\} \times \omega_1}$.

If $p, q \in \mathcal{P}_{\alpha+1}$, let $p \leq q$ iff $p \upharpoonright \alpha \leq q \upharpoonright \alpha$ and $p \upharpoonright \alpha \Vdash_{\mathcal{P}_{\alpha}} p(\alpha) \supseteq q(\alpha)$.

If $\alpha \in O$, then $\mathcal{P}_{\alpha+1}$ is the set of all function p with domain $\alpha+1$ such that $p \upharpoonright \alpha \in \mathcal{P}_{\alpha}$ and

 $\Vdash_{\varphi_a} p(\alpha)$ is a member of the Jensen club set poset $\dot{\mathcal{E}}_{\alpha}$.

If $p, q \in \mathcal{P}_{\alpha+1}$, let $p \leq q$ iff $p \upharpoonright \alpha \leq q \upharpoonright \alpha$ and $p \upharpoonright \alpha \Vdash_{\mathcal{P}_{\alpha}} p(\alpha) \leq q(\alpha)$ in the Jensen ordering.

If α is a limit ordinal with cf $\alpha = \omega$, then \mathcal{P}_{α} is the set of all functions p with domain α such that $p \upharpoonright \beta \in \mathcal{P}_{\beta}$ for all $\beta < \alpha$, and for some $\gamma < \alpha$, $\Vdash_{\mathcal{P}_{\beta}} p(\beta) = \emptyset$ for all $\beta \in [\gamma, \alpha) \cap E$.

If α is a limit ordinal with cf $\alpha > \omega$, then \mathcal{P}_{α} is the set of all functions p with domain α such that $p \upharpoonright \beta \in \mathcal{P}_{\beta}$ for all $\beta < \alpha$, and for some $\gamma < \alpha$, $\Vdash_{\mathcal{P}_{\beta}} p(\beta) = \emptyset$ for $\beta \in [\gamma, \alpha) \cap E$ and $\Vdash_{\mathcal{P}_{\alpha}} p(\beta) = \langle \varnothing, \omega_1 \rangle$ for $\beta \in [\gamma, \alpha) \cap O$.

In both limit cases we put $p \le q$ iff $p \upharpoonright \beta \le q \upharpoonright \beta$ for all $\beta < \alpha$.

From now on let $\alpha \leq \omega_2$ be a fixed ordinal. For $p \in \mathcal{P}_{\alpha}$ we define supp $(p) = \{ \beta < \alpha : p(\beta) \neq \emptyset \text{ if } \beta \in E \text{ and } p(\beta) \neq \langle \emptyset, \omega_1 \rangle \text{ if } \beta \in O \}$. Then it is easily checked that supp $(p) \cap E$ is finite, and that supp $(p) \cap O$ is at most countable.

We say that $p \in \mathcal{P}_{\alpha}$ is a determined condition if, for every $\beta \in \text{supp}(p) \cap E$, there is some $s_{\beta}(p) \in \mathcal{C}_{\{\gamma\} \times \omega_1}$ such that $p(\beta) = s_{\beta}(p)$ (more precisely, $p(\beta) = (s_{\beta}(p))$). If $p \in \mathcal{P}_{\alpha}$ is a determined condition, then by $\sigma(p)$ we denote

$$\cup \{s_{\beta}(p): \beta \in \operatorname{supp}(p) \cap E\}$$

considered as a member of $\mathcal{C}(\alpha) := \mathcal{C}_{(E \cap \alpha) \times \omega_1}$. By induction on α it is easily seen that the set of all determined conditions is dense in \mathcal{P}_{α} . So from now on we shall always work with determined conditions, and use \mathcal{P}_{α} informally to denote also the set of all determined numbers of \mathcal{P}_{α} .

Note that the function $\sigma: \mathfrak{P}_{\alpha} \to \mathcal{C}(\alpha)$ is order preserving, and has the property that if $\sigma(p) = r$ and $r' \le r$, then for some $p' \le p$, $\sigma(p') = r'$. Hence, forcing with \mathfrak{P}_{α} can be considered as forcing first with $\mathcal{C}(\alpha)$ and then with $\{p \in \mathfrak{P}_{\alpha}: \sigma(p) \in G_{\mathcal{C}(\alpha)}\}$.

LEMMA 2. For every $\dot{f} \in V^{\mathfrak{P}_{\alpha}}$ and $p_0 \in \mathfrak{P}_{\alpha}$ with the property $p_0 \Vdash_{\mathfrak{P}_{\alpha}} \dot{f} : \omega \to On$, there are $\dot{g} \in V^{\mathfrak{S}(\alpha)}$ and $p \leqslant p_0$ such that $\sigma(p) = \sigma(p_0)$ and $p \Vdash_{\mathfrak{P}_{\alpha}} \dot{f} = \dot{g}$.

PROOF. If $p \in \mathcal{P}_{\alpha}$ and if $r \in \mathcal{C}(\alpha)$ is compatible with $\sigma(p)$, then $p \wedge r$ denotes the following member q of \mathcal{P}_{α} . If $\beta \in O$, then $q(\beta) = p(\beta)$. If $\beta \in E$, then $q(\beta) = p(\beta) \cup (r \upharpoonright \{\beta\} \times \omega_1)$. It is clear that this is a well-defined condition and that $p \wedge r \leq p$.

CLAIM 2. Assume $p, p' \in \mathcal{P}_{\alpha}$ are such that $p' \leq p$. Then there exists a $q \in \mathcal{P}_{\alpha}$, with $q \leq p$ such that $\sigma(q) = \sigma(p)$, and $p' = q \wedge \sigma(p')$.

PROOF. We define $q \upharpoonright \beta$ by induction on $\beta < \alpha$. Assume $q \upharpoonright \beta$ is defined. If $\beta \in E$, let $q(\beta) = p(\beta)$. If $\beta \in O$, let $q(\beta)$ be a \mathcal{P}_{β} -name for a member of the Jensen poset $\dot{\mathcal{E}}_{\beta}$ which is equal to $p'(\beta)$ if $p' \upharpoonright \beta$ is a member of $G_{\mathcal{P}_{\beta}}$, and equal to $p(\beta)$ otherwise. If β is a limit ordinal, let $q \upharpoonright \beta = \bigcup \{q \upharpoonright \gamma : \gamma < \beta\}$. Now by induction on $\beta < \alpha$ one easily checks that

$$q \upharpoonright \beta \in \mathcal{P}_{\beta}, \quad q \upharpoonright \beta \leq p \upharpoonright \beta, \quad \sigma(q \upharpoonright \beta) = \sigma(p \upharpoonright \beta),$$

and

$$p' \upharpoonright \beta \leq (q \land \sigma(p')) \upharpoonright \beta \leq p' \upharpoonright \beta.$$

This completes the proof of Claim 2.

Starting from p_0 , by induction on $n < \omega$, we define a sequence $\langle p_n : n < \omega \rangle$ of members of \mathcal{P}_{α} , and for each $n < \omega$ sequences $\langle r_{\xi}^n : \xi < \delta_n \rangle$ and $\langle x_{\xi}^n : \xi < \delta_n \rangle$ of members of $\mathcal{C}(\alpha)$ and On, respectively, such that

- $(1)\,p_{n+1} \le p_n,$
- (2) $\sigma(p_{n+1}) = \sigma(p_n)$,
- $(3) p_{n+1} \wedge r_{\xi}^n \Vdash_{\mathfrak{S}_n} f(n) = x_{\xi}^n,$
- (4) $\{r_{\xi}^{n}: \xi < \delta_{n}\}$ is a maximal antichain below $\sigma(p_{n})$.

Let us first see how to prove the lemma using such sequences. By induction on $\beta \leq \alpha$ we construct $p \upharpoonright \beta \in \mathcal{P}_{\beta}$ such that $p \upharpoonright \beta \leq p_n \upharpoonright \beta$ and $\sigma(p \upharpoonright \beta) = \sigma(p_n \upharpoonright \beta)$ for all $n < \omega$. Assume $p \upharpoonright \beta$ is constructed. If $\beta \in E$, let $p(\beta) = p_0(\beta)$. If $\beta \in O$, let $p(\beta)$ be a \mathcal{P}_{β} -name for the greatest lower bound of $\{p_n(\beta): n < \omega\}$ in $\dot{\mathcal{E}}_{\beta}$. If β is a limit ordinal, let $p \upharpoonright \beta = \bigcup \{p \upharpoonright \gamma: \gamma < \beta\}$. Then it is easily checked that $p \upharpoonright \beta$ is a well-defined condition, and that $p = p \upharpoonright \alpha$ has the properties $p \leq p_n$ and $\sigma(p) = \sigma(p_n)$ for all $n < \omega$. Since $p \simeq p_n$ is uniquely determined by $\langle p_n : n < \omega \rangle$, we shall denote it by $\langle p_n : n < \omega \rangle$.

Define $\dot{g} \in V^{\mathcal{C}(\alpha)}$ to be a function from ω into the ordinals such that

$$\|\dot{g}(n) = x_{\xi}^n\| = r_{\xi}^n \quad \text{for } n < \omega \text{ and } \xi < \delta_n.$$

Then by (1)–(4) we have

$$p \Vdash_{\mathcal{P}} \dot{f} = \dot{g}.$$

So we are left with the construction of $\langle p_n : n < \omega \rangle$. Assume p_n is defined. By induction on $\xi < \delta_n$ we define sequences $\langle q_{\xi}^n : \xi < \delta_n \rangle$, $\langle r_{\xi}^n : \xi < \delta_n \rangle$ of members of \mathcal{P}_{α} , $\mathcal{C}(\alpha)$ and On, respectively, such that

- $(5) q_{\xi}^{n} \leq q_{\xi}^{n} \leq p_{n} \text{ for } \xi < \zeta,$
- (6) $\sigma(q_{\xi}^n) = \sigma(p_n)$,
- $(7) r_{\xi}^{n} \leq \sigma(p_{n}),$
- (8) $r_{\xi}^{n} \perp r_{\xi}^{n}$ for $\xi \neq \zeta$,
- $(9) q_{\xi}^{n} \wedge r_{\xi}^{n} \Vdash_{\varphi} \dot{f}(n) = x_{\xi}^{n}.$

The ordinal δ_n is a countable ordinal determined by the fact that $\{r_\xi^n: \xi < \delta_n\}$ is a maximal antichain below $\sigma(p_n)$. Assume q_ξ^n 's, r_ξ^n 's and x_ξ^n 's are defined for every $\xi < \zeta < \omega_1$. If $\{r_\xi^n: \xi < \zeta\}$ is a maximal antichain below $\sigma(p_n)$, we let $\delta_n = \zeta$ and $p_{n+1} = \bigwedge_{\xi < \delta_n} q_\xi^n$. Clearly (1)-(4) are satisfied. So let us assume $\{r_\xi^n: \xi < \zeta\}$ is not a maximal antichain below $\sigma(p_n)$. Pick $r \le \sigma(p_n)$ which is incompatible with each r_ξ^n ($\xi < \zeta$). Let $q = \bigwedge_{\xi < \zeta} q_\xi^n$. Choose $q' \le q \wedge r$ and x_ζ^n such that $q' \Vdash_{\mathscr{P}} f(n) = x_\zeta^n$. By Claim 2 we can find $q_\zeta^n \le q$ such that $\sigma(q_\zeta^n) = \sigma(q) = \sigma(p_n)$ and $q' = q_\zeta^n \wedge \sigma(q')$. Let $r_\zeta^n = \sigma(q')$. It is clear that (5)-(9) are satisfied. This completes the proof of Lemma 2.

Note that, in particular, Lemma 2 shows that \mathcal{P}_{α} preserves \aleph_1 . If $\alpha < \omega_2$, let

$$\mathfrak{P}_{\alpha,\omega_1} = \{ p \upharpoonright (\omega_2 \backslash \alpha) : p \in \mathfrak{P}_{\alpha} \}.$$

Let $\mathfrak{P}_{\alpha,\omega_2}$ be ordered in $V^{\mathfrak{P}_{\alpha}}$ by the ordering \leq defined as follows:

$$q' \leq q$$
 iff $\exists p \in G_{\mathcal{P}_{\alpha}}(p \cup q' \leq p \cup q)$.

Then $\mathfrak{P}_{\omega_{1}} = \mathfrak{P}_{\alpha} * \mathfrak{P}_{\alpha,\omega_{2}}$, and Lemma 2 easily gives

$$\Vdash_{\mathfrak{P}} \mathfrak{P}_{\alpha,\omega}$$
, is equivalent to $\dot{\mathfrak{P}}_{\omega}$.

LEMMA 3. Assume CH. Then \mathfrak{P}_{ω_1} satisfies the \aleph_2 -chain condition.

PROOF. Since elements of \mathfrak{P}_{ω_2} have countable supports, a standard application of Fodor's Lemma shows that we may restrict ourselves to proving that, for each $\alpha < \omega_2$, \mathfrak{P}_{α} satisfies the \aleph_2 -c.c.

So let $\alpha < \omega_2$ and let $\mathfrak{D}_{\alpha} \subseteq \mathfrak{P}_{\alpha}$ be the set of all $p \in \mathfrak{P}_{\alpha}$ such that for every $\beta \in O$, there is a $\mathcal{C}(\beta)$ -name a_p^{β} for a countable closed subset of ω_1 and a \mathfrak{P}_{β} -name A_p^{β} for a closed and unbounded subset of ω_1 such that $p \upharpoonright \beta \Vdash_{\mathfrak{P}_{\alpha}} p(\beta) = \langle a_p^{\beta}, A_p^{\beta} \rangle$.

CLAIM 3. For every $q \in \mathcal{P}_{\alpha}$ there is a $p \in \mathcal{P}_{\alpha}$ such that $p \leq q$ and $\sigma(p) = \sigma(q)$.

PROOF. We prove the claim by induction on α .

Assume $\alpha = \beta + 1$. If $\beta \in E$, there is nothing to be proved. So assume $\beta \in O$. By Lemma 2 we can find $q' \leq q \upharpoonright \beta$ and a $\mathcal{C}(\beta)$ -name a_p^{β} such that $\sigma(q') = \sigma(q \upharpoonright \beta) = \sigma(q)$ and

 $q' \Vdash_{\mathscr{D}_{\alpha}}$ the first coordinate of $q(\beta)$ is equal to a_{p}^{β} .

By the induction hypothesis we can find a $p' \in \mathfrak{D}_{\beta}$ such that $p' \leq q'$ and $\sigma(p') = \sigma(q')$. Let

$$p = p' \cup \{(\beta, \langle a_p^\beta, A_p^\beta \rangle)\},$$

where A_p^{β} is a \mathcal{P}_{β} -name such that $\Vdash_{\mathcal{P}_{\beta}} A_p^{\beta}$ is the second coordinate of $q(\beta)$. Then $p \in \mathcal{P}_{\alpha}$, $p \leq q$ and $\sigma(p) = \sigma(q)$.

First assume of $\alpha = \omega$. Let $\langle \alpha_n : n < \omega \rangle$ be a strictly increasing sequence of ordinals cofinal with α such that $\alpha_0 = 0$. By induction on $n < \omega$ we construct a sequence $\langle p_n : n < \omega \rangle$ of elements of \mathfrak{P}_{α} such that $p_0 = q$ and

- (1) $p_{n+1} \le p_n$ and $\sigma(p_{n+1}) = \sigma(p_n)$,
- $(2) p_{n+1} \upharpoonright \alpha_{n+1} \in \mathfrak{D}_{\alpha_{n+1}}.$

Assume p_n is defined. By the induction hypothesis we can find $p'_{n+1} \in \mathcal{D}_{\alpha_{n+1}}$ such that $p'_{n+1} \leq p_n \upharpoonright \alpha_{n+1}$ and $\sigma(p'_{n+1}) = \sigma(p_n \upharpoonright \alpha_{n+1})$. Let $p_{n+1} \in \mathcal{P}_{\alpha}$ be defined by $p_{n+1} \upharpoonright \alpha_{n+1} = p'_{n+1}$ and $p_{n+1}(\beta) = p_n(\beta)$ for all $\beta \in [\alpha_{n+1}, \alpha)$. Then $p_{n+1} \leq p_n$, $\sigma(p_{n+1}) = \sigma(p_n)$, and $p_{n+1} \upharpoonright \alpha_{n+1} \in \mathcal{D}_{\alpha_{n+1}}$.

Define $p \in \mathcal{P}_{\alpha}$ as follows. If $\beta \in E$, let $p(\beta) = q(\beta)$. So suppose $\beta \in O$, and let $n < \omega$ be such that $\beta \in [\alpha_n, \alpha_{n+1}]$. Let α_p^{β} be a $\mathcal{C}(\beta)$ -name for the closure of

$$\bigcup \left\{ a_{p_{i}}^{\beta} : n < i < \omega \right\},\,$$

and let A_p^{β} be a \mathfrak{P}_{β} -name for $\bigcap \{A_{p_i}^{\beta}: n < i < \omega\}$. Let $p(\beta) = \langle a_p^{\beta}, A_p^{\beta} \rangle$. Then $p \in \mathfrak{P}_{\alpha}, p \leq q$ and $\sigma(p) = \sigma(q)$.

Now assume cf $\alpha > \omega$. Since supp(q) is countable, there is a a $\gamma < \alpha$ such that supp $(q) \subseteq \gamma$. Using the induction hypothesis, we can find a $p' \in \mathfrak{D}_{\gamma}$ such that $p' \leq q \upharpoonright \gamma$ and $\sigma(p') = \sigma(q \upharpoonright \gamma) = \sigma(q)$. Define $p \in \mathfrak{P}_{\alpha}$ by $p \upharpoonright \gamma = p'$ and $p(\beta) = \emptyset$ for $\beta \in [\gamma, \alpha) \cap E$ and $p(\beta) = \langle \emptyset, \omega_1 \rangle$ for $\beta \in [\gamma, \alpha) \cap O$. Then $p \in \mathfrak{D}_{\alpha}$, $p \leq q$ and $\sigma(p) = \sigma(q)$. This proves the claim.

Suppose $p, q \in \mathfrak{N}_{\alpha}$ are such that $p(\beta) = q(\beta)$ for every $\beta \in E$ and $\Vdash_{\mathcal{C}(\beta)} a_p^{\beta} = a_q^{\beta}$ for every $\beta \in O$. We claim that then p and q are compatible in \mathfrak{P}_{α} . To see this let us define $p' \in \mathfrak{N}_{\alpha}$ as follows. If $\beta \in E$, let $p'(\beta) = p(\beta) = q(\beta)$. If $\beta \in O$, we choose $p'(\beta)$ to satisfy $\Vdash_{\mathfrak{P}_{\beta}} p'(\beta) = \langle a_p^{\beta}, A_p^{\beta} \cap A_q^{\beta} \rangle$. Then clearly $p' \in \mathfrak{N}_{\alpha}$ and $p' \leq p, q$. Since there are only \aleph_1 $\mathcal{C}(\alpha)$ -names of countable closed subsets of ω_1 , this finishes the proof of Lemma 3.

Now we are ready to finish the proof of Theorem 1. Assume GCH holds. Let $\langle \mathcal{P}_{\alpha} : \alpha \leq \omega_2 \rangle$ be the iteration defined above and let $\mathcal{P} = \mathcal{P}_{\omega_2}$. Then in $V^{\mathcal{P}}$, $2^{\aleph_0} = 2^{\aleph_1} = \aleph_2$ holds. Working in $V^{\mathcal{P}}$, we define a finite support iteration $\langle \dot{\mathcal{Q}}_{\xi} : \xi \leq \omega_2 \rangle$ of c.c.c. posets of size $\leq \aleph_1$ à la Solovay and Tennenbaum [33], such that if $\dot{\mathcal{Q}} = \dot{\mathcal{Q}}_{\omega_2}$, then $V^{\mathcal{P} * \dot{\mathcal{Q}}}$ satisfies (i)–(iii) of Theorem 1.

Assume $\xi < \omega_2$ and that in $V^{\mathfrak{P} \star \dot{\mathfrak{Q}}_{\xi}}$ we have a partition $[\omega_1]^2 = \dot{K}_0 \cup \dot{K}_1$ with no bad sets. Pick an even ordinal $\alpha < \omega_2$ such that $\dot{\mathfrak{Q}}_{\xi}$, \dot{K}_0 , $\dot{K}_1 \in V^{\mathfrak{P}_a}$. We have already remarked that $\mathfrak{P}_{\alpha,\omega_2}$ is, in $V^{\mathfrak{P}_a}$ (equivalent to) a mixed iteration of length ω_2 of Cohen and Jensen posets. It begins by first introducing \aleph_1 Cohen reals and then adding a Jensen club. So by Lemma 1, the poset $\dot{\mathbb{S}}_{\xi}$ of all finite 0-homogeneous subsets of ω_1 which are separated by $C_{\dot{\mathbb{S}}_{a+1}}$ is a c.c.c. poset in $V^{\mathfrak{P}_{a+2} \star \dot{\mathbb{Q}}_{\xi}}$. Hence, one condition $s_0 \in \mathbb{S}_{\xi}$ forces that the generic object is uncountable. At the next step of the iteration we force with $\{s \in \dot{\mathbb{S}}_{\xi} \colon s \supseteq s_0\}$, which we again denote by $\dot{\mathbb{S}}_{\xi}$. We know that $\dot{\mathbb{Q}}_{\xi} \star \dot{\mathbb{S}}_{\xi}$ is a c.c.c. poset in $V^{\mathfrak{P}_{a+2}}$, but we have to show that it remains c.c.c after forcing with $\mathfrak{P}_{a+2,\omega_2}$. Let us prove the following more general fact. Let $\bar{\mathbb{Q}}$ be an arbitrary c.c.c. poset. Then $\bar{\mathbb{Q}}$ remains c.c.c. after forcing with $\mathfrak{P}=\mathfrak{P}_{\omega}$. Otherwise, pick a \mathfrak{P} -name

 $\langle \dot{q}_{\gamma}: \gamma < \omega_{1} \rangle$ for an ω_{1} -sequence of incompatible members of $\bar{\mathbb{Q}}$. As in the proof of Lemma 2, by induction on γ we construct a decreasing sequence $\langle p_{\gamma}: \gamma < \omega_{1} \rangle$ of members of \mathfrak{P} , a sequence $\langle r_{\gamma}: \gamma < \omega_{1} \rangle$ of members of $\mathfrak{P}_{E \times \omega_{1}}$, and a sequence $\langle q_{\gamma}: \gamma < \omega_{1} \rangle$ of members of $\bar{\mathbb{Q}}$ such that

(1)
$$\sigma(p_{\gamma}) = \sigma(p_{\delta})$$
 for $\gamma < \delta < \omega_1$,

 $(2) p_{\gamma} \wedge r_{\gamma} \Vdash_{\mathfrak{P}} \dot{q}_{\gamma} = q_{\gamma}.$

Pick an $A \in [\omega_1]^{\aleph_1}$ such that r_{γ} and r_{δ} are compatible, whenever $\gamma, \delta \in A$. Then it is easily checked that we have reached a contradiction since $\{q_{\gamma}: \gamma \in A\}$ is an uncountable antichain of $\overline{\mathbb{Q}}$.

Similarly, one defines posets for getting $\omega_1 \stackrel{\star}{\to} (\omega_1)_{<\aleph_0}^2$ as well as the posets for getting MA_{\aleph_1} . This completes the proof of Theorem 1.

The following result (in ZFC) is an easy consequence of Lemma 1.

THEOREM 2.
$$\omega_1 \stackrel{*}{\to} (closed \ \alpha)^2_{\leq \aleph_0} for \ all \ \alpha < \omega_1$$
.

PROOF. Let $[\omega_1]^2 = \bigcup_{\xi < \omega_1} J_{\xi}$ be a given disjoint partition such that $|J_{\xi}| < \aleph_0$ for all $\xi < \omega_1$. Let $\omega \le \alpha < \omega_1$ be fixed. Let $\dot{\mathbb{S}} \in V^{\mathcal{C}_{\omega_1}} \cdot \dot{\mathbb{S}}$ be the set of all finite subsets of ω_1 separated by $C_{\dot{\mathbb{S}}}$ such that $|[s]^2 \cap J_{\xi}| \le 1$ for all $\xi < \omega_1$. By Lemma 1, $\dot{\mathbb{S}}$ is a c.c.c. poset in $V^{\mathcal{C}_{\omega_1}} \cdot \dot{\mathbb{S}}$. So we can find an $s_0 \in \dot{\mathbb{S}}$ such that $s_0 \Vdash_{\dot{\mathbb{S}}} \cup G_{\dot{\mathbb{S}}}$ is stationary in ω_1 . Thus, in particular, we can find a $p_0 \in \mathcal{C}_{\omega_1} * \dot{\mathbb{S}} * \dot{\mathbb{S}}$ and a $(\mathcal{C}_{\omega_1} * \dot{\mathbb{S}} * \dot{\mathbb{S}})$ -name \dot{A} such that

$$p_0 \Vdash \dot{A}$$
 is a closed subset of ω_1 of type $\alpha + 1 \& \forall \xi < \omega_1 | [\dot{A}]^2 \cap J_{\xi} | \le 1$.

Pick a $(\mathcal{C}_{\omega_1} * \dot{\mathcal{E}} * \dot{\mathcal{E}})$ -name \dot{f} such that $p_0 \Vdash \dot{f}$: $\alpha + 1 \to \dot{A}$ is the unique isomorphism. Let $\langle \alpha_n : n < \omega \rangle$ be an enumeration of $\alpha + 1$. Now by induction on $n < \omega$ we define a decreasing sequence $\langle p_n : n < \omega \rangle$ of elements of $\mathcal{C}_{\omega_1} * \dot{\mathcal{E}} * \dot{\mathcal{E}}$ and a sequence $\langle \beta_n : n < \omega \rangle$ of ordinals $\langle \omega_1 \text{ such that } p_{n+1} \Vdash \dot{f}(\alpha_n) = \beta_n$, making sure that $B = \{\beta_n : n < \omega\}$ is a closed subset of ω_1 . Then tp $B = \alpha + 1$ and $\forall \xi < \omega_1 \mid [B]^2 \cap J_{\xi} \mid \xi \mid 1$. This completes the proof.

REMARKS. (1) The closed unbounded set poset was defined and first used in buildling c.c.c. posets in the extension by Jensen [8]. The fact that an elementary chain of submodels is useful in proving the c.c.c. property of posets with separated conditions was first realized by Shelah [1, 3]. The use of the Cohen generic reals in building conditions in σ -closed posets was first made explicit by Avraham [2]. The first mixed iteration of Cohen posets and σ -closed posets was defined by Mitchell [26]. It is clear that if we want only to preserve \aleph_1 , then in the above mixed iteration the Jensen posets can be replaced by any σ -closed poset. If we want the iteration to have the \aleph_2 -c.c., the σ -closed posets must satisfy one of the standard strong \aleph_2 -chain conditions.

- (2) The posets involved in Lemma 1 can also be iterated in a countable support iteration $\langle \mathfrak{T}_{\alpha} : \alpha \leq \omega_2 \rangle$. A Layer type argument shows that \mathfrak{T}_{ω_2} preserves \aleph_1 [5, 25]. Using GCH, one then shows that \mathfrak{T}_{ω_1} satisfies the \aleph_2 -c.c.
- (3) If we are not interested in the exact equiconsistency result, we could use the Proper Forcing Axiom (PFA; [6, 7, 31]) in showing that (i)–(iii) of Theorem 1 are

consistent. Namely, in this case, in Lemma 1, we can disregard \mathcal{Q} and \mathcal{C}_{ω_1} and directly show by the same proof that $\dot{\mathbb{S}}_0$ and $\dot{\mathbb{S}}_1$ are c.c.c. posets in $V^{\mathcal{E}}$. To build a condition which will meet all the \mathfrak{W}_F 's, we need only use MA_{\aleph_1} , a consequence of PFA.

(4) It is clear that the proof of Lemma 1 also shows that each (finite) power of the poset S_1 satisfies the c.c.c. Hence the model of Theorem 1 can also satisfy the following partition property of ω_1 stronger than $\omega_1 \xrightarrow{*} (\omega_1)_{\leq \aleph_0}^2$:

If $[\omega_1]^2 = \bigcup_{i \in I} K_i$ is a disjoint partition where each K_i is finite, then there is a decomposition $\omega_1 = \bigcup_{n \leq \omega} A_n$ such that

$$\forall n < \omega \, \forall i \in I | [A_n]^2 \cap K_i | \leq 1.$$

2. This section begins with a discussion of the partition relation $\omega_1 \rightarrow (\omega_1, (\omega_1; \text{fin } \omega_1))^2$ and ends with the applications mentioned in the introduction.

For $G \subseteq [\omega_1]^2$, $\operatorname{Chr}(G)$ denotes the chromatic number of G and equals the minimal cardinal κ for which there is a partition $\omega_1 = \bigcup_{\xi < \kappa} A_{\xi}$ such that $[A_{\xi}]^2 \cap G = \emptyset$ for all $\xi < \kappa$.

THEOREM 3. Assume MA_{\aleph_1} and $\omega_1 \to (\omega_1, (\omega_1; \operatorname{fin} \omega_1))^2$. Then for every $G \subseteq [\omega_1]^2$ either $\operatorname{Chr}(G) \leq \aleph_0$, or else there is an $A \in [\omega_1]^{\aleph_1}$ and a family \mathfrak{B} of \aleph_1 disjoint finite subsets of ω such that $(\{\alpha\} \otimes F) \cap G \neq \emptyset$ for all $\alpha \in A$ and $F \in \mathfrak{B}$ with $\alpha < \min F$.

PROOF. Given $G \subseteq [\omega_1]^2$, let \mathcal{P} be the set of all finite $p \subseteq \omega_1$ such that $[p]^2 \cap G = \emptyset$. The ordering on \mathcal{P} is \supset .

If \mathfrak{P} is a c.c.c. poset, then by MA_{\aleph_1} , \mathfrak{P} is σ -centered, so $Chr(G) \leq \aleph_0$.

Hence, we may assume \mathfrak{P} is not a c.c.c. poset. Let $\{p_{\alpha}: \alpha < \omega_1\}$ be an uncountable antichain of \mathfrak{P} . A standard Δ -system argument shows we may assume the p_{α} 's are disjoint, strictly increasing and of the same cardinality n ($1 \le n < \omega$). Let $\langle p_{\alpha}(i): i < n \rangle$ be the strictly increasing enumeration of p_{α} , ($\alpha < \omega_1$). For each $\alpha < \beta < \omega_1$, there exist i, j < n such that $\{p_{\alpha}(i), p_{\beta}(j)\} \in G$. This gives a coloring of $[\omega_1]^2$ into n^2 colors. Now an easy application of $\omega_1 \to (\omega_1, (\omega_1; \sin \omega_1))^2$ completes the proof of Theorem 3.

A consequence of Theorem 3 is that, in the model of §1,

$$\omega_1 \rightarrow (\text{stationary}, (\omega_1; \text{fin } \omega_1))^2$$

holds. However, an examination of the proof of Theorem 1 shows that, in fact, in this model, the stronger relation

$$\omega_1 \rightarrow (\text{stationary}, (\text{stationary}; \text{fin } \omega_1))^2$$

holds. Let us also mention the following strengthening (*) of $\omega_1 \to (\omega_1, (\omega_1; \sin \omega_1))^2$ in a dual direction. The consistency of this strengthening will appear in a later paper.

- (*) For every partition $[\omega_1]^2 = K_0 \cup K_1$ either there is an $A \in [\omega_1]^{\aleph_1}$ such that $[A]^2 \subseteq K_0$, or else there exist $\langle A_n : n < \omega \rangle$ and $\langle \mathfrak{B}_n : n < \omega \rangle$ such that:
 - (i) $\omega_1 \setminus \bigcup_{n < \omega} A_n$ is countable;
 - (ii) \mathfrak{B}_n is a family of \aleph_1 disjoint finite subsets of ω_1 ;
 - (iii) $(\{\alpha\} \otimes F) \cap K_1 \neq \emptyset$ for all $\alpha \in A_n$ and $F \in \mathfrak{B}_n$ with $\alpha < \min F$.

Let us note that it is not possible to strengthen $\omega_1 \to (\omega_1, (\omega_1; \operatorname{fin} \omega_1))^2$ at the same time in both the direction of Theorem 3 and that of (*), i.e., there is a partition $[\omega_1]^2 = K_0 \cup K_1$ with no stationary 0-homogeneous sets, but ω_1 is not a countable union of bad sets. A proof of this simple fact will also appear elsewhere.

THEOREM 4. Assume MA_{\aleph_1} and $\omega_1 \to (\omega_1, (\omega_1; \operatorname{fin} \omega_1))^2$. Then for every partition $[\omega_1]^2 = K_0 \cup K_1$ either there is an $A \in [\omega_1]^{\aleph_1}$ such that $[A]^2 \subseteq K_0$, or else for every $\alpha < \omega_1$ there are $B, C \subseteq \omega_1$ such that $\operatorname{tp} B = \alpha, |C| = \aleph_1$ and $[B]^2 \cup (B \otimes C) \subseteq K_1$.

In particular we have the following consequence mentioned in the introduction.

THEOREM 5. Assume MA_{\aleph_1} . Then $\omega_1 \to (\omega_1, (\omega_1; \text{fin } \omega_1))^2$ implies $\omega_1 \to (\omega_1, \alpha)^2$ for all $\alpha < \omega_1$.

PROOF OF THEOREM 4: Let $[\omega_1]^2 = K_0 \cup K_1$ be a given partition, and assume $[A]^2 \not\subseteq K_0$ for all $A \in [\omega_1]^{\aleph_1}$. For each $\alpha < \omega_1$ we shall construct $B, C \subseteq \omega_1$ such that $\operatorname{tp} B = \omega^{\alpha}$, $|C| = \aleph_1$ and $[B]^2 \cup (B \otimes C) \subseteq K_1$. First we need some technical definitions and facts.

For each $1 \le \alpha < \omega_1$ we fix a nondecreasing sequence $\langle \alpha(n) : n < \omega \rangle$ of smaller ordinals such that $\omega^{\alpha} = \sum_{n < \omega} \omega^{\alpha(n)}$, and if $\alpha > 1$, then $\alpha(0) \ge 1$. Also for every set $B \subseteq \omega_1$ of type ω^{α} we fix a decomposition $B = \bigcup_{n < \omega} B(n)$ such that

$$B(0) < \cdots < B(n) < \cdots$$
 and $\operatorname{tp} B(n) = \omega^{\alpha(n)}$.

Let $\[\]$ be a fixed nonprincipal ultrafilter on $\[\omega_1 \]$. By induction on $1 \le \alpha < \omega_1 \]$ we define a nonprincipal ultrafilter $\[\]$ $\[\]$ $\[\]$ on every set $\[B \subseteq \omega_1 \]$ of type $\[\]$ $\[\]$. If $\[\alpha = 1 \]$, then the isomorphism of $\[\]$ and $\[\]$ induces $\[\]$ $\[\]$ $\[\]$ So now assume $\[\]$ 1 < $\[\]$ $\[\]$ and define

$$D \in \mathfrak{A}_{\alpha}(B)$$
 iff $\{n < \omega \colon D \cap B(n) \in \mathfrak{A}_{\alpha(n)}(B(n))\} \in \mathfrak{I}$.

By induction on α it easily follows that tp $D = \omega^{\alpha}$ for every $D \in \mathfrak{A}_{\alpha}(B)$. The following lemma is due to Hajnal [24, p. 1031]. For the sake of completeness we sketch the proof.

CLAIM 4. Let $1 \le \alpha < \omega_1$ and let $B \subseteq \omega_1$ have type ω^{α} . Let $\langle D_{\xi} : \xi < \omega_1 \rangle$ be a sequence of elements of $\mathfrak{A}_{\alpha}(B)$. Then there exists a $D \subseteq B$, with tp $D = \omega^{\alpha}$ such that $D \setminus D_{\xi}$ is a bounded subset of D for every $\xi < \omega_1$.

PROOF. The proof is by induction on α . The case $\alpha = 1$ is a well-known consequence of $\operatorname{MA}_{\aleph_1}$. So let $1 < \alpha < \omega_1$. By the induction hypothesis, for each $n < \omega$, there is an $E_n \subseteq B(n)$ of type $\omega^{\alpha(n)}$ such that $E_n \setminus D_{\xi}$ is bounded in E_n for all $\xi < \omega_1$ with the property

$$n \in N_{\varepsilon} = \{m < \omega \colon D_{\varepsilon} \cap B(m) \in \mathcal{O}_{\alpha(m)}(B(m))\}.$$

Now for each $\xi < \omega_1$ we fix $f_{\xi} \in {}^{\omega}\omega$ with the property that for every $n \in N_{\xi}$, the $f_{\xi}(n)$ -end-section of E_n is a subset of D_{ξ} . Let $N \subseteq \omega$ be an infinite set almost included in each N_{ξ} , and let $f \in {}^{\omega}\omega$ eventually dominate each f_{ξ} . For $n \in N$, let D_n be the f(n)-end-section of E_n . Let $D = \bigcup_{n \in N} D_n$. Then D is as required.

Now we are ready for the proof of Theorem 4. By induction on $\alpha < \omega_1$, for each $A \in [\omega_1]^{\aleph_1}$ we shall construct $B, C \subseteq A$ such that $\operatorname{tp} B = \omega^{\alpha}$, $|C| = \aleph_1$ and $[B]^2 \cup (B \otimes C) \subseteq K_1$. Since the case $\alpha = 0$ is trivial we assume $1 \leq \alpha < \omega_1$. Let $A \in [\omega_1]^{\aleph_1}$

be given. By $\omega_1 \to (\omega_1, (\omega_1; \operatorname{fin} \omega_1))^2$ there is an $A_0 \in [A]^{\aleph_1}$ and a family \mathfrak{B} of \aleph_1 disjoint finite subsets of A such that $(\{\beta\} \otimes F) \cap K_1 \neq \emptyset$ for all $\alpha \in A_0$ and $F \in \mathfrak{B}$ with $\alpha < \min F$.

Using the induction hypothesis we recursively construct sets B_n , $C_n \subseteq A_0$ $(n < \omega)$ such that:

- (1) tp $B_n = \omega^{\alpha(n)} \& |C_n| = \aleph_1$;
- (2) $B_n < B_{n+1} & C_n \supseteq C_{n+1}$;
- (3) $B_{n+1} \subseteq C_n$;
- $(4) [B_n]^2 \cup (B_n \otimes C_n) \subseteq K_1.$

Let $B=\bigcup_{n<\omega}B$. Then tp $B=\omega^\alpha$ and $[B]^2\subseteq K_1$. Pick $F\in\mathfrak{B}$ such that $\sup B\leqslant\min F$. By the assumptions on A_0 and \mathfrak{B} , we have that $B\subseteq\bigcup_{\gamma\in F}K_1(\gamma)$. Hence for some $\gamma=\gamma(F)\in F$, we have $K_1(\gamma)\cap B\in\mathfrak{A}_\alpha(B)$. By Claim 4 there is a $D\subseteq B$ with tp $D=\omega^\alpha$ such that $D\setminus K_1(\gamma(F))$ is bounded in D for every $F\in\mathfrak{B}$, with $\sup B\leqslant\min F$. Thus, for some uncountable $\mathfrak{B}_0\subseteq\mathfrak{B}$ and $\delta\in D$ we have $D\setminus\delta\subseteq K_1(\gamma(F))$ and $\sup B\leqslant\min F$ for all $F\in\mathfrak{B}_0$. Let $B^*=D\setminus\delta$ and $C^*=\{\gamma(F):F\in\mathfrak{B}_0\}$. Then B^* , $C^*\subseteq A$, tp $B^*=\omega^\alpha$, $|C^*|=\aleph_1$, and $|B^*|^2\cup(B^*\otimes C^*)\subseteq K_1$. This completes the proof.

Let us now consider the following combinatorial principle introduced by Fred Galvin:

- (**) There are ideals $\mathcal{G}, \mathcal{G} \subseteq \mathcal{P}(\omega_1)$ such that:
- (i) $\mathcal{G} \cap \mathcal{G} = [\omega_1]^{<\aleph_0}$;
- (ii) $\mathcal{G} \vee \mathcal{G} = \{A \cup B : A \in \mathcal{G} \& B \in \mathcal{G}\} = [\omega_1]^{\leq \aleph_0}$;
- (iii) $\forall A \in [\omega_1]^{\aleph_1}([A]^{\aleph_0} \cap \mathcal{G} \neq \emptyset \& [A]^{\aleph_0} \cap \mathcal{G} \neq \emptyset).$

Galvin proved that Φ implies (**) and that (**) has some topological applications [15, Theorem 4]. He also asked for the consistency of \neg (**). The next result shows that \neg (**) is consistent.

THEOREM 6. $\omega_1 \rightarrow (\omega_1; \sin \omega_1)_2^2$ implies $\neg (**)$.

PROOF. Let \mathcal{G} and \mathcal{G} be ideals satisfying (i) and (ii) of (**). For each $\alpha < \omega_1$ we can find disjoint $A_{\alpha} \in \mathcal{G}$ and $B_{\alpha} \in \mathcal{G}$ such that $A_{\alpha} \cup B_{\alpha} = \alpha$. Define $[\omega_1]^2 = K_0 \cup K_1$ by

$$\{\beta,\alpha\}_{\leq} \in K_0 \text{ iff } \beta \in A_{\alpha}.$$

Since $\omega_1 \to (\omega_1; \sin \omega_1)_2^2$ holds, we consider the following two cases:

Case I. There is an $A \in [\omega_1]^{\aleph_1}$ and a family \mathfrak{B} of \aleph_1 disjoint finite subsets of ω_1 such that $(\{\alpha\} \otimes F) \cap K_0 \neq \emptyset$ for all $\alpha \in A$ and $F \in \mathfrak{B}$ with $\alpha < \min F$.

For $F \in \mathfrak{B}$ we define $A(F) = \bigcup \{A_{\alpha} : \alpha \in F\}$. Then $A(F) \in \mathfrak{I}$ and $A \cap \min F \subseteq A(F)$ for each $F \in \mathfrak{B}$. Hence $[A]^{\aleph_0} \subseteq \mathfrak{I}$, contradicting the conjunction of (i) and (iii). This shows that (**) fails in this case.

Case II. There is an $A \in [\omega_1]^{\aleph_1}$ and a family \mathfrak{B} of \aleph_1 disjoint finite subsets of ω_1 such that $(\{\alpha\} \otimes F) \cap K_1 \neq \emptyset$ for all $\alpha \in A$ and $F \in \mathfrak{B}$ with $\alpha < \min F$.

Proceeding as in Case I we show that here $[A]^{\aleph_0} \subseteq \mathcal{Y}$, which again contradicts (**). This completes the proof.

The remainder of this section is devoted to the topological applications mentioned in the introduction.

THEOREM 7. Assume $\omega_1 \to (\omega_1, (\omega_1; \operatorname{fin} \omega_1))^2$. Let X be a toplogical space with no uncountable discrete subspaces. Let $\mathfrak A$ be a family of open subsets of X such that $\cup \mathfrak A = X$. Then there is a countable $\mathfrak A_0 \subseteq \mathfrak A$ such that $X = \bigcup \{\overline{U}: U \in \mathfrak A_0\}$.

PROOF. Assume by way of contradiction that, for every countable $\mathfrak{A}_0 \subseteq \mathfrak{A}$, $X \neq \bigcup \{\overline{U}: U \in \mathfrak{A}_0\}$. Then by induction on $\alpha < \omega_1$, we can easily construct sequences $\langle U_\alpha : \alpha < \omega_1 \rangle$ and $\langle x_\alpha : \alpha < \omega_1 \rangle$ of members of \mathfrak{A} and X, respectively, such that

 $(1) x_{\alpha} \in U_{\alpha},$

 $(2) x_{\alpha} \notin \bigcup \{ \overline{U}_{\beta} : \beta < \alpha \}.$

Define $[\omega_1]^2 = K_0 \cup K_1$ by

$$\{\beta, \alpha\}_{<} \in K_0 \text{ iff } x_{\beta} \notin U_{\alpha}.$$

Since $\omega_1 \to (\omega_1, (\omega_1; \text{fin } \omega_1))^2$ holds, we consider the following two cases:

Case I. There is an $A \in [\omega_1]^{\aleph_1}$ such that $[A]^2 \subseteq K_0$. Then for every $\alpha \in A$, $U_{\alpha} \cap \{x_{\beta}: \beta \in A\} = \{x_{\alpha}\}$. Hence $\{x_{\alpha}: \alpha \in A\}$ is an uncountable discrete subspace of X, a contradiction.

Case II. There is an $A \in [\omega_1]^{\aleph_1}$ and a family \mathfrak{B} of \aleph_1 disjoint subsets of ω_1 such that $(\{\alpha\} \otimes F) \cap K_1 \neq \emptyset$ for all $\alpha \in A$ and $F \in \mathfrak{B}$ with $\alpha < \min F$. For $F \in \mathfrak{B}$ we define

$$U(F)=\bigcup_{\gamma\in F}U_{\gamma}.$$

Then for each $F \in \mathfrak{B}$,

$$\{x_{\alpha}: \alpha \in A \cap \min F\} \subseteq U(F).$$

Choose inductively an $A_0 \in [A]^{\aleph_1}$ and, for each $\alpha \in A_0$, an $F_\alpha \in \mathfrak{B}$ such that if $\beta < \alpha$ are in A_0 , then

$$\max F_{\beta} < \beta < \min F_{\alpha} \le \max F_{\alpha} < \alpha$$
.

Then by (1) and (2), for each $\alpha \in A_0$,

$$(U_{\alpha} \setminus \overline{U(F_{\alpha})}) \cap \{x_{\beta} : \beta \in A_{0}\} = \{x_{\alpha}\}.$$

Hence $\{x_{\alpha}: \alpha \in A_0\}$ is an uncountable discrete subspace of X, a contradiction. This completes the proof.

THEOREM 8. Assume $\omega_1 \to (\omega_1, (\omega_1; \text{fin } \omega_1))^2$. Then every regular toplogical space with no uncountable discrete subspace is hereditarily Lindelöf.

PROOF. Clearly it suffices to show that X is Lindelöf. So let \mathfrak{A} be a family of open sets such that $\cup \mathfrak{A} = X$. Since X is a regular space, there is a family \mathfrak{V} of open subsets of X such that $\cup \mathfrak{V} = X$, and such that for every $W \in \mathfrak{V}$ there is a $U(W) \in \mathfrak{A}$ such that $U(W) \supseteq \overline{W}$. By Theorem 7 there is a countable $\mathfrak{V}_0 \subseteq \mathfrak{V}$ such that

$$X = \bigcup \{ \overline{W} : W \in \mathcal{V}_0 \}.$$

Hence $\mathfrak{A}_0 = \{U(W): W \in \mathfrak{I}_0\}$ is a countable subfamily of \mathfrak{A} such that $\bigcup \mathfrak{A}_0 = X$. This completes the proof.

COROLLARY 9. Assume $\omega_1 \to (\omega_1, (\omega_1; \sin \omega_1))^2$. Then every regular hereditarily separable topological space is hereditarily Lindelöf.

THEOREM 10. Assume $\omega_1 \to (\omega_1, (\omega_1; \sin \omega_1))^2$. Let X be a Hausdorff space with no uncountable discrete subspaces. Then every point of X is the intersection of countably many open subsets of X.

PROOF. Fix $x \in X$. Since X is a Hausdorff space, for every $y \in X \setminus \{x\}$ there is an open set U_y such that $y \in U_y$ and $x \notin \overline{U}_y$. By Theorem 7, applied to the space $X \setminus \{x\}$, there is a countable $Y \subseteq X \setminus \{x\}$ such that $X \setminus \{x\} = \bigcup \{\overline{U}_y \colon y \in Y\}$. This shows that $\{x\}$ is a G_δ subset of X.

The following theorem is a simple consequence of Theorem 10 using a result of [18]. However, since the result we need is a relatively simple application of $(2^{\aleph_0})^+ \to (\aleph_1)^2_{\aleph_0}$, we shall give some details.

THEOREM 11. Assume $\omega_1 \to (\omega_1, (\omega_1; \sin \omega_1))^2$. Then every Hausdorff space with no uncountable discrete subspaces has cardinality $\leq 2^{\aleph_0}$.

PROOF. Assume by way of contradiction that X is a Hausdorff space of cardinality $> 2^{\aleph_0}$ with no uncountable discrete subspaces.

Let < be a well-ordering of X. By Theorem 10, for each $x \in X$ we can fix a family $\{U_x^n: n < \omega\}$ of open subsets of X such that $\{x\} = \bigcap_{n < \omega} U_x^n$. For $m, n < \omega$ and $\{x, y\}_{<} \in [X]^2$ we let

$$\{x, y\} \in K_{m,n}$$
 iff $x \notin U_v^n \& y \notin U_x^m$.

Clearly, $[X]^2 = \bigcup_{m,n<\omega} K_{m,n}$. By $(2^{\aleph_0})^+ \to (\aleph_1)^2_{\aleph_0}$, there are m', $n' < \omega$ and $D \in [X]^{\aleph_1}$ such that $[D]^2 \subseteq K_{m',n'}$. For $x \in D$, let $W_x = U_x^{m'} \cap U_x^{n'}$. Then for each $x \in D$, $W_x \cap D = \{x\}$. Hence, D is a discrete subspace of X, a contradiction. This completes the proof.

We conclude the paper with a remark on the following partition relation (it is dual to $\omega_1 \to (\omega_1, (\omega_1; \sin \omega_1))^2$), denoted by

$$\omega_1 \rightarrow (\omega_1, (\sin \omega_1; \omega_1))^2$$
.

This relation means: For every partition $[\omega_1]^2 = K_0 \cup K_1$ either

- (1) there is an $A \in [\omega_1]^{\aleph_1}$ such that $[A]^2 \subseteq K_0$, or
- (2) there is a family \mathscr{Q} of \aleph_1 disjoint finite subsets of ω_1 and a set $B \in [\omega_1]^{\aleph_1}$ such that $(F \otimes \{\beta\}) \cap K_1 \neq \emptyset$ for all $F \in \mathscr{Q}$ and $\beta \in B$ with max $F < \beta$.

The consistency of $\omega_1 \to (\omega_1, (\text{fin }\omega_1; \omega_1))^2$ is an open problem. It is easily seen that $\omega_1 \to (\omega_1, (\text{fin }\omega_1; \omega_1))^2$ implies the dual statement of Theorem 8, i.e., that every regular space with no uncountable discrete subspaces is hereditarily separable.

The reader interested in the role of MA_{\aleph_1} in the problems we have considered here can find some information in [4].

REFERENCES

- 1. U. Avraham and S. Shelah, Martin's axiom does not imply that every two \aleph_1 -dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161–176.
 - 2. _____, Isomorphism types of Aronszajn trees (to appear).
- 3. U. Avraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of \aleph_1 -dense real order types (to appear).

- 4. U. Avraham and S. Todorčević, *Martin's axiom and first countable S and L spaces*, Handbook of the Set-Theoretic Topology (to appear).
 - 5. J. Baumgartner, Iterated forcing (to appear).
- 6. _____, Application of the proper forcing axiom, Handbook of the Set-Theoretic Topology (to appear).
 - 7. K. J. Devlin, The Yorkshireman's guide to proper forcing (to appear).
- 8. K. J. Devlin and H. Johnstråten, *The Souslin problem*, Lecture Notes in Math., vol. 405, Springer-Verlag, Berlin and New York, 1974.
 - 9. B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
- 10. B. A. Efimov, On the cardinality of Hausdorff spaces, Dokl. Akad. Nauk SSSR 164 (1965), 967-970. (Russian)
 - 11. P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489.
- 12. P. Erdös and A. Hajnal, *Unsolved problems in set theory*, Axiomatic Set Theory, Proc. Sympos. Pure Math., vol. 13, Part I, Amer. Math. Soc., Providence, R.I., 1971, pp. 14–48.
- 13. _____, Unsolved and solved problems in set theory (Proceedings of the Tarski Symposium), Proc. Sympos. Pure Math., vol. 25, Amer. Math. Soc., Providence, R.I., 1974, pp. 267–287.
- 14. V. Fedorčuk, On the cardinality of hereditarily separable compact Hausdorff spaces, Soviet Math. Dokl. 16 (1975), 651-655.
- 15. F. Galvin, On Gruenhage's generalization of first countable spaces. II, Notices Amer. Math. Soc. 24 (1977), A-257.
 - 16. J. de Groot, Discrete subspaces of Hausdorff spaces, Bull. Acad. Polon. Sci. 13 (1965), 537-544.
- 17. A. Hajnal, Some results and problems in set theory, Acta Math. Acad. Sci. Hungar. 11 (1960), 277-298.
- 18. A. Hajnal and I. Juhász, *Discrete subspaces of topological spaces*, Nederl. Akad. Wetensch. Indag. Math. **29** (1967), 343–356.
- 19. _____, A consistency result concerning hereditarily α-separable spaces, Nederl. Akad. Wetensch. Indag. Math. 81 (1973), 301–307.
- 20. J. Isbell, Remarks on spaces of large cardinal numbers, Czechoslovak Math. J. 14 (89) (1964), 383-385.
 - 21. T. J. Jech, Set theory, Academic Press, New York, 1978.
- 22. I. Juhász, *A survey of S and L spaces*, Topology Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam, 1980, pp. 674–688.
 - 23. K. Kunen, Set theory, North-Holland, Amsterdam, 1980.
- 24. R. Laver, Partition relations for uncountable cardinals $\leq 2^{\aleph_0}$, Infinite and Finite sets, Vol. II, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 1029–1042.
 - 25. _____, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169.
- 26. W. J. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972), 21-46.
 - 27. F. P. Ramsey, On the problem of formal logic. Proc. London Math. Soc. (2) 30 (1930), 264-286.
 - 28. J. Roitman, Basic S and L, Handbook of the Set-Theoretic Topology (to appear).
- 29. M. E. Rudin, A normal hereditarily separable non-Lindelöf space, Illinois J. Math. 10 (1972), 621-626.
 - 30. _____, S and L spaces, Surveys in General Topology, Academic Press, 1980, pp. 431-444.
- 31. S. Shelah, *Proper forcing*, Lectures Notes in Math., vol. 940, Springer-Verlag, Berlin, Heidelberg and New York, 1982
- 32. W. Sierpiński, Sur un problème de la théorie des relations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 2 (1933), 285-287.
- 33. R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. of Math. (2) 94 (1971), 201-245.
 - 34. S. Todorčević, On the S-space problem, Abstracts Amer. Math. Soc. 2 (1981), no. 4, A-394.
 - 35. _____, $\omega_1 \rightarrow (\omega_1, \omega + 2)^2$ is consistent, Abstracts Amer. Math. Soc. 2 (1981), no. 5, A-462.
 - 36. _____, On the cardinality of Hausdorff spaces, Abstracts Amer. Math. Soc. 2 (1981), no. 6, A-529.
 - 37. N. H. Williams, Combinatorial set theory, North-Holland, Amsterdam, 1977.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80309